Salt resistance genes revealed by functional metagenomics from brines and moderate-salinity rhizosphere within a hypersaline environment

نویسندگان

  • Salvador Mirete
  • Merit R. Mora-Ruiz
  • María Lamprecht-Grandío
  • Carolina G. de Figueras
  • Ramon Rosselló-Móra
  • José E. González-Pastor
چکیده

Hypersaline environments are considered one of the most extreme habitats on earth and microorganisms have developed diverse molecular mechanisms of adaptation to withstand these conditions. The present study was aimed at identifying novel genes from the microbial communities of a moderate-salinity rhizosphere and brine from the Es Trenc saltern (Mallorca, Spain), which could confer increased salt resistance to Escherichia coli. The microbial diversity assessed by pyrosequencing of 16S rRNA gene libraries revealed the presence of communities that are typical in such environments and the remarkable presence of three bacterial groups never revealed as major components of salt brines. Metagenomic libraries from brine and rhizosphere samples, were transferred to the osmosensitive strain E. coli MKH13, and screened for salt resistance. Eleven genes that conferred salt resistance were identified, some encoding for well-known proteins previously related to osmoadaptation such as a glycerol transporter and a proton pump, whereas others encoded proteins not previously related to this function in microorganisms such as DNA/RNA helicases, an endonuclease III (Nth) and hypothetical proteins of unknown function. Furthermore, four of the retrieved genes were cloned and expressed in Bacillus subtilis and they also conferred salt resistance to this bacterium, broadening the spectrum of bacterial species in which these genes can function. This is the first report of salt resistance genes recovered from metagenomes of a hypersaline environment.

منابع مشابه

Editorial: From Genes to Species: Novel Insights from Metagenomics

The majority of microbes in many environments are considered " as yet uncultured " and were traditionally considered inaccessible for study through the microbiological gold standard of pure culture. The emergence of metagenomic approaches has allowed researchers to access and study these microbes in a culture-independent manner through DNA sequencing and functional expression of metagenomic DNA...

متن کامل

Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines

Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "me...

متن کامل

Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils

The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helic...

متن کامل

Cloning and Bioinformatics Analysis of the Gene Encoding Transcription Factor MYB44 of Sunflower (Helianthus annuus L.) under Salt Stress Conditions

Sunflower oilseeds (Helianthus annuus L.) are widely used around the world. Soil salinity negatively affects many morphological and physiological traits of sunflowers. Oil seed sunflower line tolerant to salinity stress (AS5305) was planted in normal and salinity stress conditions in a completely randomized design with two biological replications in a controlled environment. Salinity was applie...

متن کامل

Diversity of Moderate Halophilic bacteria from Sambhr Salt Lake

Halophiles are salt-loving organisms that inhabit hypersaline environments and are well equipped to balance the osmotic pressure of the environment and resist the denaturing effects of salts. Halophiles can be grouped as slightly, moderately or extremely halophilic, depending on their requirement for NaCl. Moderately halophilic bacteria are microorganisms able to grow optimally in media contain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015